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Abstract

Interceptors with fragmenting warheads that
detonate in proximity to target vehicles are being
used in missile defense tests. As part of this effort, it
is necessary to be able to measure the performance of
an interceptor during the endgame and it is preferable
that the measurements be recorded independently
from the interceptor telemetry. Target-based
instrumentation and telemetry are used to provide this
independent performance measurement. A Blast
Initiation Detector (BID) was developed for use
onboard target vehicles to detect the initiation of the
blast from the fragmenting warhead. The blast
detection provides a target-centric temporal baseline
for the final sequence of events during the intercept.
The BID uses a circumferential array of six
individual optical fibers attached to the surface of the
target re-entry vehicle. The distal tip of each optical
fiber protrudes beyond the surface of the aeroshell to
provide the required optical field-of-view. Testing
was used to address concerns of possible optical tip
damage that could be induced by aerothermal loads.
The optical fiber/aeroshell interface design of the
BID was proven out by performing wind tunnel
testing in a simulated aerothermal environment at the
Avery  Advanced Technology  Development
Laboratory by using two toggling laser beams at
differing angles of incidence to simulate the blasts.
The exposed distal tip of the optical fiber reached
1200°F during the worst aerothermal heating. The
measured optical signals from the fibers indicated no
significant degradation of performance and provided
a proof-of-concept for the design of the
optical/aeroshell interface of the BID.

Introduction

The Blast Initiation Detector (BID) is a
target-based instrument that detects the optical signal
from the warhead blast and provides a target-centric
temporal baseline for the final sequence of events
during missile intercept tests. This information,
when used in conjunction with data from other

instruments that are used to detect fragment impacts
on the target vehicle, can be used to quantify the
standoff distance at the time when the warhead
exploded. The detection of the blast in the target
data stream can also provide a temporal reference
point for associating telemetry data from other
sources, including the interceptor and the range.

The BID is comprised of a symmetrical
arrangement of six multi-stranded borosilicate glass
optical fibers that view the space surrounding the
target vehicle and deliver the optical signals to a
central electronics package. The large numerical
aperture (NA=0.66) of the fiber material provides a
wide field-of-view to ensure that all statistically
likely blast locations will be detected by at least one
fiber. The optical signals from the blast are coupled
into high-speed photodiode amplifiers that register
the blast initiation time into the telemetry stream.
BID timing analysis indicates that the expected
response time or latency of the BID will be less than
10 microseconds'.

The BIDs consist of an AC-coupled
electronics module with six optical fiber inputs. A
block diagram is shown in Figure 1. The optical
fiber/aeroshell interface design was known at the
outset to be the area of highest risk for the system
design since the application requires the exposed
fiber distal tips to survive the flight re-entry
environment with preservation of the optical field-of-
view and throughput until the time of intercept. A
drawing of the final optical fiber assembly is shown
in Figure 2. Based on thermal and field-of-view
requirements, borosilicate glass was chosen as the
fiber material. A high temperature epoxy
(RESBOND 950) based on high purity ceramic
binders and aluminum powder was used to bond the
glass fibers into the stainless steel connectors. Each
fiber consists of eight parallel 50 micron diameter
strands as shown in the expanded cross-sectional
view in Figure 2. A stainless steel spiral wound outer
sheath protects the fibers during handling.




The BID system is installed in the forward
section of the target vehicle as a compromise
between field-of-view and heating environment
considerations. The distal tips of the optical fibers
protrude through the aeroshell at six equally spaced
circumferential locations to provide complete
coverage. These locations imposed tight bend radius
requirements on the fiber to prevent interference from
other components of the target vehicle. Using eight
individual smaller diameter fibers in lieu of one
larger fiber reduced the minimum bend radius to
approximately one inch. Based on a trade-off
between field-of-view and bend radius concerns, the
fibers were installed such that each fiber axis made a
45 degree angle with the axis of the target vehicle.
For unrestricted field-of-view, it was found to be
necessary for the distal tip of the optical fiber to
protrude approximately 0.017 inches above the
surface of the vehicle, Figure 3. There were concerns
about excessive temperature augmentation at the
protruding tip.

Proof-of-Concept Testing

Wind tunnel testing was used to address the
concerns about high temperatures on the exposed
fiber tip. The test hardware was fabricated to
simulate the BID optical/aeroshell environment upon
re-entry. The circular plate in Figure 4 shows the
instrumented portion of the wind tunnel test hardware
and is representative of a small section of the aft
bulkhead of the Forward Section of the Target
Vehicle. The materials and construction geometry
were duplicates of the actual flight hardware. The
test fixture was instrumented as shown in Figure 4
and installed into Cell 4 of the wind tunnel test
facility at the Avery Advanced Technology
Development Laboratory. During the tests, two laser
beams were toggled onto the optical fiber at two
differing angles of incidence, approximately 25° and
35° off-axis. Temperatures, pressure, qualitative
infrared thermal images, Schlerien images, and
relative optical throughput were recorded during four
tests. The Schlerien images revealed the shock
structure at the BID fiber distal tip protrusion. The
infrared images showed the basic heating trend of the
test fixture. The other data are discussed below.

Test 1

The first wind tunnel test (IRS1116)
occurred 10 February 2000. The total pressure was
488 PSIA and the total temperature was 1406°R. This
first test was the basic proof-of-concept test that
validated the design of the fiber/aeroshell interface.
The optical fiber tip protruded into the boundary

layer 0.014 inches. The data plot is shown in Figure
5. The skin temperatures approached 800°F
gradually during the three-minute exposure. The
optical throughput remained relatively unchanged as
indicated by the BID optical signal. The upper
optical signal on the plot corresponds to the 35
degree off-axis laser and the lower optical signal
corresponds to the 25 degree angle. The slight
variation in throughput noted on the upper optical
signal was due to the smaller spot size and the normal
vibration of the wind tunnel and was not due to the
degradation of the fiber. It is significant to note that
the temperature of the protruding distal tip was only a
few degrees higher than the hottest skin temperature.
There was very little temperature augmentation on
the protruding tip.

Test 2

During the second test (IRS1117), the
protruding tip was extended from 0.014 to 0.018
inches normal from the surface of the plate. The
increased protrusion was selected to afford some
tolerance for thermally induced expansion and
contraction of target vehicle components while
preserving field-of-view. The same optical fiber was
reused from the first test. The tunnel conditions were
more severe than the first test and an attempt was
made to thermally shock the protruding fiber similar
to what would be expected on re-entry. The total
pressure was 444 PSIA and the total temperature was
initially 2654°R. As seen in the data plot of Figure 6,
the distal tip temperature exceeded 1200°F for a few
seconds. Then as the tunnel conditions were relaxed
(total pressure of 479 PSIA and total temperature of
1296°R) the surfaces cooled and then reheated
gradually approaching 800°F. Again the optical
throughput was preserved for the full three-minute
exposure. However, the increased protrusion
distance was evidenced by the temperature
augmentation of the tip relative to the skin. In this
test, the tip peaked as much as 200°F warmer than the
skin and ended up approximately 50°F warmer for
the duration of the test. Also the shock structure at
the protruding tip was easily visible within the
Schlerien images.

Test 3

The thermal conditions were substantially
worsened during the third test. The laser on-times
were reduced from five seconds down to three
seconds to ensure that data were acquired for at least
several transitions under the more severe conditions.
The same optical fiber was again used. The intent on
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this test was to induce optical failure of the fiber.
The total pressure of the tunnel was 282 PSIA and
the total temperature was 2576°R. The data plot is
shown in Figure 7. The optical fiber throughput was
lost approximately 50 seconds into the test. This was
followed by a gradual ramping of the baseline optical
signal for about 20 seconds until the wind tunnel
conditions were relaxed. The measured protruding
tip temperature was actually lower than measured
skin temperatures during this test and this was
attributed to non-symmetrical heating profiles within
the tunnel under the stated run conditions.
Subsequent inspection of the test fixture revealed that
the sudden loss of optical throughput was due to the
melting of solder that was used to bond thermocouple
TCO5 to the test fixture. The solder melting
temperature  was  1105°F, consistent  with
temperatures recorded on the test fixture skin surface.
A track of ablated material was seen from the
location of thermocouple TCOS to the protruding tip
of the optical fiber and melted metal residue was
evident on the fiber tip. The slow ramping signal
measured after the abrupt loss of optical throughput
was attributed to the glowing molten material on the
fiber tip. This signal quickly vanished when the
tunnel conditions were relaxed to cool down. When
the molten material was removed from the distal tip
after the test, the intact ends of the glass fiber strands
could still be clearly seen under a microscope.

Test 4

The fiber manufacturer had experienced
great difficulty in reliably reproducing the fibers with
the high temperature epoxy used in the fiber from
Tests 1 through 3. In production, many fibers were
fracturing during the polishing process. To increase
yield, a small amount of low temperature epoxy was
added to the spaces between the 50 micron fiber
strands and the surrounding epoxy was still all high
temperature material. There were concerns that the
addition of the low temperature epoxy would
compromise the thermal survivability of the fiber
tips. These concerns were validated in Test 4.

Test 4 was a repeat of Test 3 to optical
failure with a fiber that used a small amount of the
lower temperature epoxy. A review of the data
shown in Figure 8 indicated that the optical
throughput was lost within about 20 seconds. This
was followed by a gradual exponential rising of the
background optical signal (when the laser was off)
and an erratic laser optical signal for the next 105
seconds. This was followed by immediate loss of
background optical signal on transition to tunnel
cool-down with optical throughput approximately

1/10 the original. Subsequent disassembly of the
distal tip showed that the glass in the tip had melted.
The exponentially rising background was attributed
to the glowing/burning tip. The main conclusion
from Test 4 was that no low temperature materials
could be tolerated in the optical fiber distal tip.

After these test results were interpreted,
APL went back to the fiber manufacturer and jointly
solved the production yield problem by the following
process changes:

(1) Use of only high temperature epoxy, but with a
reduced aluminum particle size to improve fiber-
to-fiber interstitial bonding;

(2) Use of a syringe rather than an open mixing pot
to hold mixed epoxy and increase pot life;

(3) Use of a hand pick to push epoxy into the fiber-
to-fiber interstices; and

(4) Use of a grinding/polishing process with reduced
particle sizes on the polishing apparatus to
reduce fiber jarring and fracturing.

The final production fibers were identical to
those used during Tests 1 through 3, except for the
manufacturing process changes noted above.

Conclusions

The wind tunnel tests were performed to
guide the design process and to prove out the concept
for the optical fiber/aeroshell interface. Test data
indicate the temperatures experienced by the
protruding distal tip are not significantly higher than
the aeroshell skin temperatures and within the
thermal survivability envelope of the materials used.

Based on data from Test 4, it was
recognized that even small amounts of low
temperature epoxy in the distal tip of the optical
fibers greatly impaired performance. Based on data
from Tests 1 through 3, the optical fiber/aeroshell
interface that was designed for the Blast Initiation
Detectors was shown to withstand the simulated
thermal environment of re-entry for the required
performance duration with little or no thermally
induced loss of optical throughput or field-of-view.
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